Math 102

Krishanu Sankar

September 13, 2018

Announcements

- WeBWork Diagnostic Test (due Sunday) - you get 100% of points just for completing it.

Goals Today

- Average rates of change
- Calculating them from data
- Graphically - secant lines
- Using a spreadsheet for computation
- Instantaneous rates of change (derivatives)
- Computed from average rates of change using a limit
- Computing the derivative
- Graphically - tangent lines

Average Rate of Change

- Let $P(t)$ be a function of time, t. The average rate of change of $P(t)$ from $t=a$ to $t=b$ is defined to be

$$
\frac{\text { Change in } P}{\text { Change in } t}=\frac{\Delta P}{\Delta t}=\frac{P(b)-P(a)}{b-a}
$$

Average Rate of Change

- Let $P(t)$ be a function of time, t. The average rate of change of $P(t)$ from $t=a$ to $t=b$ is defined to be

$$
\frac{\text { Change in } P}{\text { Change in } t}=\frac{\Delta P}{\Delta t}=\frac{P(b)-P(a)}{b-a}
$$

- Example: if $P(t)$ is the position of an object, then the above formula gives the average velocity over a period of time.

Example - Average Velocity

Distance	20 m	30 m	40 m	60 m	80 m	100 m
Time	2.89	3.79	4.64	6.31	7.92	9.58

Jamaican sprinter Usain Bolt's split times in his world record run at the 2009 World Championships Men's 100m in Berlin.

[^0]| Distance | 20 m | 30 m | 40 m | 60 m | 80 m | 100 m |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Time | 2.89 | 3.79 | 4.64 | 6.31 | 7.92 | 9.58 |

- Question: How would we calculate Bolt's average velocity from 20 m to 40 m ? 40 m to 60 m ? 20 m to 60 m ? 50 m to 70 m ?

Distance	20 m	30 m	40 m	60 m	80 m	100 m
Time	2.89	3.79	4.64	6.31	7.92	9.58

- Question: How would we calculate Bolt's average velocity from 20 m to 40 m ? 40 m to 60 m ? 20 m to 60 m ? 50 m to 70 m ?

$$
\text { Average velocity }=\frac{\text { Distance traveled }}{\text { Time elapsed }}
$$

Distance	20 m	30 m	40 m	60 m	80 m	100 m
Time	2.89	3.79	4.64	6.31	7.92	9.58

- Question: How would we calculate Bolt's average velocity from 20 m to 40 m ? 40 m to 60 m ? 20 m to 60 m ? 50 m to 70 m ?

Average velocity $=\frac{40-20}{4.64-2.89} \mathrm{~m} / \mathrm{s}$

Warning: remember which term goes in the numerator and which goes in the denominator! This is the
average velocity from $t=2.89$ to $t=4.64$!

Distance	20 m	30 m	40 m	60 m	80 m	100 m
Time	2.89	3.79	4.64	6.31	7.92	9.58

- Question: How would we calculate Bolt's average velocity from 20 m to 40 m ? 40 m to 60 m ? 20 m to 60 m ? 50 m to 70 m ?

$$
\text { Average velocity }=\frac{60-40}{6.31-4.64} \mathrm{~m} / \mathrm{s}
$$

Warning: remember which term goes in the numerator and which goes in the denominator! This is the average velocity from $t=2.89$ to $t=6.31$!

Distance	20 m	30 m	40 m	60 m	80 m	100 m
Time	2.89	3.79	4.64	6.31	7.92	9.58

- Question: How would we calculate Bolt's average velocity from 20 m to 40 m ? 40 m to 60 m ? 20 m to 60 m ? 50 m to 70 m ?

$$
\text { Average velocity }=\frac{60-20}{6.31-2.89} \mathrm{~m} / \mathrm{s}
$$

Warning: remember which term goes in the numerator and which goes in the denominator! This is the average velocity from $t=4.64$ to $t=6.31$!

Distance	20 m	30 m	40 m	60 m	80 m	100 m
Time	2.89	3.79	4.64	6.31	7.92	9.58

- Question: How would we calculate Bolt's average velocity from 20 m to 40 m ? 40 m to 60 m ? 20 m to 60 m ? 50 m to 70 m ?

Not enough information to calculate.

Graphically - Secant Lines

The secant line to a curve through two points P and Q is the line passing through those two points.

Its slope is rise over run.

$$
\text { Slope }=\frac{\Delta y}{\Delta x}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

Instantaneous rate of change

Suppose that the height in meters of a rising balloon is given by the equation $P(t)=t^{2}$.

Instantaneous rate of change

Suppose that the height in meters of a rising balloon is given by the equation $P(t)=t^{2}$.

- Exercise: What is the average velocity of the balloon from $t=5$ to $t=7$?
- Exercise: What is the average velocity of the balloon from $t=5$ to $t=6$?

Instantaneous rate of change

Suppose that the height in meters of a rising balloon is given by the equation $P(t)=t^{2}$.

- Exercise: What is the average velocity of the balloon from $t=5$ to $t=7$?
- Exercise: What is the average velocity of the balloon from $t=5$ to $t=6$?
- $t=5$ to $t=5.1 ? ~ t=5$ to $t=5.01$?
https://docs.google.com/spreadsheets/d/ 18GnyHRe2T4AxrEgqXmoOLZsYB-OpF_itO8v1R6sJtME/ edit?usp=sharing

Instantaneous Rate of Change

We consider the interval from $t=5$ to $t=5+h$, and approximate the average rate of change when h is very small. (asymptotic thinking!)

Instantaneous Rate of Change

We consider the interval from $t=5$ to $t=5+h$, and approximate the average rate of change when h is very small. (asymptotic thinking!)

$$
\frac{\Delta P}{\Delta t}=\frac{P(5+h)-P(5)}{(5+h)-5}=\frac{(5+h)^{2}-5^{2}}{h}
$$

Instantaneous Rate of Change

We consider the interval from $t=5$ to $t=5+h$, and approximate the average rate of change when h is very small. (asymptotic thinking!)

$$
\begin{aligned}
& \frac{\Delta P}{\Delta t}=\frac{P(5+h)-P(5)}{(5+h)-5}=\frac{(5+h)^{2}-5^{2}}{h} \\
= & \frac{\left(25+10 h+h^{2}\right)-25}{h}=\frac{10 h+h^{2}}{h}=10+h
\end{aligned}
$$

Instantaneous Rate of Change

We consider the interval from $t=5$ to $t=5+h$, and approximate the average rate of change when h is very small. (asymptotic thinking!)

$$
\begin{aligned}
& \frac{\Delta P}{\Delta t}=\frac{P(5+h)-P(5)}{(5+h)-5}=\frac{(5+h)^{2}-5^{2}}{h} \\
= & \frac{\left(25+10 h+h^{2}\right)-25}{h}=\frac{10 h+h^{2}}{h}=10+h
\end{aligned}
$$

When h is very small, this is approximately 10 .

Instantaneous Rate of Change

We consider the interval from $t=5$ to $t=5+h$, and approximate the average rate of change when h is very small. (asymptotic thinking!)

$$
\begin{aligned}
& \frac{\Delta P}{\Delta t}=\frac{P(5+h)-P(5)}{(5+h)-5}=\frac{(5+h)^{2}-5^{2}}{h} \\
= & \frac{\left(25+10 h+h^{2}\right)-25}{h}=\frac{10 h+h^{2}}{h}=10+h
\end{aligned}
$$

When h is very small, this is approximately 10 .

$$
\lim _{h \rightarrow 0}(10+h)=10
$$

'The limit as h goes to 0 of $10+h$ equals 10.'

Instantaneous Rate of Change

- Let $f(x)$ be a function, and let x_{0} be some number. The instantaneous rate of change of $f(x)$ is defined as the limit (if it exists)

$$
\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}
$$

What is a limit anyways? To be addressed in upcoming classes!

Instantaneous Rate of Change

- Let $f(x)$ be a function, and let x_{0} be some number. The instantaneous rate of change of $f(x)$ is defined as the limit (if it exists)

$$
\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}
$$

What is a limit anyways? To be addressed in upcoming classes!

- Warning: $\lim _{h \rightarrow 0}$ is NOT the same as plugging in $h=0$!

Instantaneous Rate of Change

- Let $f(x)$ be a function, and let x_{0} be some number. The instantaneous rate of change of $f(x)$ is defined as the limit (if it exists)

$$
\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}
$$

What is a limit anyways? To be addressed in upcoming classes!

- Warning: $\lim _{h \rightarrow 0}$ is NOT the same as plugging in $h=0$!
- Graphically, this is represented as the slope of the tangent line at $\left(x_{0}, f\left(x_{0}\right)\right)$.

Now you try!

- Exercise: Calculate the instantaneous rate of change of $f(x)=x^{2}$ at $x=3$. Do this using the definition as a limit.
- Further Exercise: Try for $f(x)=x^{3}$.
- Question: If we let h be negative, how does the picture change?

The Derivative

Let $f(x)$ be a function. The derivative of f is a new function, written as f^{\prime}, whose value at a point x_{0} is given by
$f^{\prime}\left(x_{0}\right)=$ Instantaneous rate of change of f at x_{0}

$$
=\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}
$$

Terminology

Question: The derivative of f, evaluated at $x=x_{0}$, equals
(A) $\frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}$
(B) The slope of the tangent line at $x=x_{0}$
(C) $\lim _{x_{0} \rightarrow 0} \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}$
(D) The line intersecting the graph of the function at $x=x_{0}$ and $x=x_{0}+h$
(E) More than one of the above
(F) None of the above

Terminology

Question: The derivative of f, evaluated at $x=x_{0}$, equals
(A) $\frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}$
(B) The slope of the tangent line at $x=x_{0}$
(C) $\lim _{x_{0} \rightarrow 0} \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}$
(D) The line intersecting the graph of the function at $x=x_{0}$ and $x=x_{0}+h$
(E) More than one of the above
(F) None of the above

Terminology

Question: Which of the following is a secant line?
(A) $\frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}$
(B) The slope of the tangent line at $x=x_{0}$
(C) $\lim _{x_{0} \rightarrow 0} \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}$
(D) The line intersecting the graph of the function at $x=x_{0}$ and $x=x_{0}+h$
(E) More than one of the above
(F) None of the above

Terminology

Question: Which of the following is a secant line?
(A) $\frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}$
(B) The slope of the tangent line at $x=x_{0}$
(C) $\lim _{x_{0} \rightarrow 0} \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}$
(D) The line intersecting the graph of the function at $x=x_{0}$ and $x=x_{0}+h$
(E) More than one of the above
(F) None of the above

Terminology

Question: The total change of $f(x)$ over the interval $\left[x_{0}, x_{0}+h\right]$ equals
(A) $\frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}$
(B) The slope of the tangent line at $x=x_{0}$
(C) $\lim _{x_{0} \rightarrow 0} \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}$
(D) The line intersecting the graph of the function at $x=x_{0}$ and $x=x_{0}+h$
(E) More than one of the above
(F) None of the above

Terminology

Question: The total change of $f(x)$ over the interval $\left[x_{0}, x_{0}+h\right]$ equals
(A) $\frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}$
(B) The slope of the tangent line at $x=x_{0}$
(C) $\lim _{x_{0} \rightarrow 0} \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}$
(D) The line intersecting the graph of the function at $x=x_{0}$ and $x=x_{0}+h$
(E) More than one of the above
(F) None of the above

Terminology

Question: The average rate of change of $f(x)$ over the interval $\left[x_{0}, x_{0}+h\right]$ equals
(A) $\frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}$
(B) The slope of the tangent line at $x=x_{0}$
(C) $\lim _{x_{0} \rightarrow 0} \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}$
(D) The line intersecting the graph of the function at $x=x_{0}$ and $x=x_{0}+h$
(E) More than one of the above
(F) None of the above

Terminology

Question: The average rate of change of $f(x)$ over the interval $\left[x_{0}, x_{0}+h\right]$ equals
(A) $\frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}$
(B) The slope of the tangent line at $x=x_{0}$
(C) $\lim _{x_{0} \rightarrow 0} \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}$
(D) The line intersecting the graph of the function at $x=x_{0}$ and $x=x_{0}+h$
(E) More than one of the above
(F) None of the above

Recap and Reminders

- Average rates of change
- Calculating them from data
- Graphically - secant lines
- Using a spreadsheet for computation
- Instantaneous rates of change (derivatives)
- Computed from average rates of change using a limit
- Computing the derivative
- Graphically - tangent lines
- WeBWork Diagnostic Test due Sunday

Bonus slide - Derivative of $f(x)=x^{2}$

evaluated at $x=x_{0}$

$$
\begin{aligned}
f^{\prime}\left(x_{0}\right) & =\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\left(x_{0}+h\right)^{2}-x_{0}^{2}}{h} \\
& =\lim _{h \rightarrow 0} \frac{\left(x_{0}^{2}+2 x_{0} h+h^{2}\right)-x_{0}^{2}}{h} \\
& =\lim _{h \rightarrow 0} \frac{2 x_{0} h+h^{2}}{h} \\
& =\lim _{h \rightarrow 0}\left(2 x_{0}+h\right)=2 x_{0}
\end{aligned}
$$

So $f^{\prime}(3)=2 \cdot 3=6$.

Bonus slide - Derivative of $f(x)=x^{3}$

 evaluated at $x=x_{0}$$$
\begin{aligned}
f^{\prime}\left(x_{0}\right) & =\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\left(x_{0}+h\right)^{3}-x_{0}^{3}}{h} \\
& =\lim _{h \rightarrow 0} \frac{\left(x_{0}^{3}+3 x_{0}^{2} h+3 x_{0} h^{2}+h^{3}\right)-x_{0}^{3}}{h} \\
& =\lim _{h \rightarrow 0} \frac{3 x_{0}^{2} h+3 x_{0} h^{2}+h^{3}}{h} \\
& =\lim _{h \rightarrow 0}\left(3 x_{0}^{2}+3 x_{0} h+h^{2}\right)=3 x_{0}
\end{aligned}
$$

[^0]: Source: https://biomech.byu.edu/Portals/82/docs/coaching/100m\%20WR\%20Split\%20Analysis.xlsx

