Math 102

Krishanu Sankar

September 13, 2018

 WeBWork Diagnostic Test (due Sunday) - you get 100% of points just for completing it.

Goals Today

Average rates of change

- Calculating them from data
- Graphically secant lines
- Using a spreadsheet for computation
- Instantaneous rates of change (derivatives)
 - Computed from average rates of change using a limit
 - Computing the derivative
 - Graphically tangent lines

Average Rate of Change

Let P(t) be a function of time, t. The average rate of change of P(t) from t = a to t = b is defined to be

$$\frac{\text{Change in } P}{\text{Change in } t} = \frac{\Delta P}{\Delta t} = \frac{P(b) - P(a)}{b - a}$$

Average Rate of Change

Let P(t) be a function of time, t. The average rate of change of P(t) from t = a to t = b is defined to be

$$\frac{\text{Change in } P}{\text{Change in } t} = \frac{\Delta P}{\Delta t} = \frac{P(b) - P(a)}{b - a}$$

Example: if P(t) is the position of an object, then the above formula gives the average velocity over a period of time.

Example - Average Velocity

	E j					
Distance	20m	30m	40m	60m	80m	100m
Time	2.89	3.79	4.64	6.31	7.92	9.58

Jamaican sprinter Usain Bolt's split times in his world record run at the 2009 World Championships Men's 100m in Berlin.

Source: https://biomech.byu.edu/Portals/82/docs/coaching/100m%20WR%20Split%20Analysis.xlsx

Picture source: https://sg.news.yahoo.com/world-record-bolt-triumphed-over-air-231023749.html

Distance						
Time	2.89	3.79	4.64	6.31	7.92	9.58

Distance						
Time	2.89	3.79	4.64	6.31	7.92	9.58

Average velocity = $\frac{\text{Distance traveled}}{\text{Time elapsed}}$

Distance						
Time	2.89	3.79	4.64	6.31	7.92	9.58

Average velocity
$$= \frac{40-20}{4.64-2.89} \text{ m/s}$$

Warning: remember which term goes in the numerator and which goes in the denominator! This is the average velocity from t = 2.89 to t = 4.64!

Distance						
Time	2.89	3.79	4.64	6.31	7.92	9.58

Average velocity
$$= \frac{60-40}{6.31-4.64}$$
 m/s

Warning: remember which term goes in the numerator and which goes in the denominator! This is the average velocity from t = 2.89 to t = 6.31!

Distance						
Time	2.89	3.79	4.64	6.31	7.92	9.58

Average velocity
$$= \frac{60-20}{6.31-2.89}$$
 m/s

Warning: remember which term goes in the numerator and which goes in the denominator! This is the average velocity from t = 4.64 to t = 6.31!

Distance						
Time	2.89	3.79	4.64	6.31	7.92	9.58

Not enough information to calculate.

Graphically - Secant Lines

The secant line to a curve through two points P and Q is the line passing through those two points.

https://www.desmos.com/calculator/0gbqdldt1v

Its slope is rise over run.

Slope
$$= \frac{\Delta y}{\Delta x} = \frac{y_2 - y_1}{x_2 - x_1}$$

Suppose that the height in meters of a rising balloon is given by the equation $P(t) = t^2$.

Suppose that the height in meters of a rising balloon is given by the equation $P(t) = t^2$.

- Exercise: What is the average velocity of the balloon from t = 5 to t = 7?
- Exercise: What is the average velocity of the balloon from t = 5 to t = 6?

Suppose that the height in meters of a rising balloon is given by the equation $P(t) = t^2$.

- Exercise: What is the average velocity of the balloon from t = 5 to t = 7?
- Exercise: What is the average velocity of the balloon from t = 5 to t = 6?

▶
$$t = 5$$
 to $t = 5.1$? $t = 5$ to $t = 5.01$?

https://docs.google.com/spreadsheets/d/ 18GnyHRe2T4AxrEgqXmo0LZsYB-0pF_it08vlR6sJtME/ edit?usp=sharing

We consider the interval from t = 5 to t = 5 + h, and approximate the average rate of change **when** h is very small. (asymptotic thinking!)

We consider the interval from t = 5 to t = 5 + h, and approximate the average rate of change **when** h is very small. (asymptotic thinking!)

$$\frac{\Delta P}{\Delta t} = \frac{P(5+h) - P(5)}{(5+h) - 5} = \frac{(5+h)^2 - 5^2}{h}$$

We consider the interval from t = 5 to t = 5 + h, and approximate the average rate of change **when** h is very small. (asymptotic thinking!)

$$\frac{\Delta P}{\Delta t} = \frac{P(5+h) - P(5)}{(5+h) - 5} = \frac{(5+h)^2 - 5^2}{h}$$
$$= \frac{(25+10h+h^2) - 25}{h} = \frac{10h+h^2}{h} = 10+h$$

We consider the interval from t = 5 to t = 5 + h, and approximate the average rate of change **when** h is very small. (asymptotic thinking!)

$$\frac{\Delta P}{\Delta t} = \frac{P(5+h) - P(5)}{(5+h) - 5} = \frac{(5+h)^2 - 5^2}{h}$$
$$= \frac{(25+10h+h^2) - 25}{h} = \frac{10h+h^2}{h} = 10+h$$

When h is **very small**, this is approximately 10.

We consider the interval from t = 5 to t = 5 + h, and approximate the average rate of change **when** h is very small. (asymptotic thinking!)

$$\frac{\Delta P}{\Delta t} = \frac{P(5+h) - P(5)}{(5+h) - 5} = \frac{(5+h)^2 - 5^2}{h}$$
$$= \frac{(25+10h+h^2) - 25}{h} = \frac{10h+h^2}{h} = 10+h$$

When h is **very small**, this is approximately 10.

$$\lim_{h \to 0} (10 + h) = 10$$

'The limit as h goes to 0 of 10 + h equals 10.'

Let f(x) be a function, and let x₀ be some number. The **instantaneous rate of change** of f(x) is defined as the **limit** (if it exists)

$$\lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$

What is a limit anyways? To be addressed in upcoming classes!

Let f(x) be a function, and let x₀ be some number. The **instantaneous rate of change** of f(x) is defined as the **limit** (if it exists)

$$\lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$

What is a limit anyways? To be addressed in upcoming classes!

• Warning: $\lim_{h \to 0}$ is NOT the same as plugging in h = 0!

Let f(x) be a function, and let x₀ be some number. The **instantaneous rate of change** of f(x) is defined as the **limit** (if it exists)

$$\lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$

What is a limit anyways? To be addressed in upcoming classes!

- Warning: $\lim_{h \to 0}$ is NOT the same as plugging in h = 0!
- ► Graphically, this is represented as the slope of the tangent line at (x₀, f(x₀)).

Now you try!

- Exercise: Calculate the instantaneous rate of change of f(x) = x² at x = 3. Do this using the definition as a limit.
- Further Exercise: Try for $f(x) = x^3$.
- Question: If we let h be negative, how does the picture change?

Let f(x) be a function. The **derivative of** f is a new function, written as f', whose value at a point x_0 is given by

 $f'(x_0)$ =Instantaneous rate of change of f at x_0

$$= \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$

Question: The **derivative** of f, evaluated at $x = x_0$, equals

(A)
$$\frac{f(x_0+h)-f(x_0)}{h}$$

(B) The slope of the tangent line at $x = x_0$

(C)
$$\lim_{x_0 \to 0} \frac{f(x_0+h) - f(x_0)}{h}$$

(D) The line intersecting the graph of the function at $x = x_0$ and $x = x_0 + h$

(E) More than one of the above

Question: The **derivative** of f, evaluated at $x = x_0$, equals

(A) $\frac{f(x_0+h)-f(x_0)}{h}$

(B) The slope of the tangent line at $x = x_0$

(C)
$$\lim_{x_0 \to 0} \frac{f(x_0+h) - f(x_0)}{h}$$

(D) The line intersecting the graph of the function at $x = x_0$ and $x = x_0 + h$

(E) More than one of the above

Question: Which of the following is a secant line?

(A)
$$\frac{f(x_0+h)-f(x_0)}{h}$$

(B) The slope of the tangent line at $x = x_0$

(C)
$$\lim_{x_0 \to 0} \frac{f(x_0+h) - f(x_0)}{h}$$

(D) The line intersecting the graph of the function at $x = x_0$ and $x = x_0 + h$

(E) More than one of the above

Question: Which of the following is a secant line?

(A)
$$\frac{f(x_0+h)-f(x_0)}{h}$$

(B) The slope of the tangent line at $x = x_0$

(C)
$$\lim_{x_0 \to 0} \frac{f(x_0+h) - f(x_0)}{h}$$

(D) The line intersecting the graph of the function at $x = x_0$ and $x = x_0 + h$

(E) More than one of the above

Question: The total change of f(x) over the interval $[x_0, x_0 + h]$ equals

(A)
$$\frac{f(x_0+h)-f(x_0)}{h}$$

(B) The slope of the tangent line at $x = x_0$

(C)
$$\lim_{x_0 \to 0} \frac{f(x_0+h) - f(x_0)}{h}$$

(D) The line intersecting the graph of the function at $x = x_0$ and $x = x_0 + h$

(E) More than one of the above

Question: The total change of f(x) over the interval $[x_0, x_0 + h]$ equals

(A)
$$\frac{f(x_0+h)-f(x_0)}{h}$$

(B) The slope of the tangent line at $x = x_0$

(C)
$$\lim_{x_0 \to 0} \frac{f(x_0+h) - f(x_0)}{h}$$

(D) The line intersecting the graph of the function at $x = x_0$ and $x = x_0 + h$

(E) More than one of the above

Question: The average rate of change of f(x) over the interval $[x_0, x_0 + h]$ equals

(A)
$$\frac{f(x_0+h)-f(x_0)}{h}$$

(B) The slope of the tangent line at $x = x_0$

(C)
$$\lim_{x_0 \to 0} \frac{f(x_0+h) - f(x_0)}{h}$$

(D) The line intersecting the graph of the function at $x = x_0$ and $x = x_0 + h$

(E) More than one of the above

Question: The average rate of change of f(x) over the interval $[x_0, x_0 + h]$ equals

(A) $\frac{f(x_0+h)-f(x_0)}{h}$

(B) The slope of the tangent line at $x = x_0$

(C)
$$\lim_{x_0 \to 0} \frac{f(x_0+h) - f(x_0)}{h}$$

(D) The line intersecting the graph of the function at $x = x_0$ and $x = x_0 + h$

(E) More than one of the above

Recap and Reminders

- Average rates of change
 - Calculating them from data
 - Graphically secant lines
- Using a spreadsheet for computation
- Instantaneous rates of change (derivatives)
 - Computed from average rates of change using a limit
 - Computing the derivative
 - Graphically tangent lines
- WeBWork Diagnostic Test due Sunday

Bonus slide - Derivative of $f(x) = x^2$ evaluated at $x = x_0$

$$f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$

=
$$\lim_{h \to 0} \frac{(x_0 + h)^2 - x_0^2}{h}$$

=
$$\lim_{h \to 0} \frac{(x_0^2 + 2x_0h + h^2) - x_0^2}{h}$$

=
$$\lim_{h \to 0} \frac{2x_0h + h^2}{h}$$

=
$$\lim_{h \to 0} (2x_0 + h) = 2x_0$$

So $f'(3) = 2 \cdot 3 = 6$.

Bonus slide - Derivative of $f(x) = x^3$ evaluated at $x = x_0$

$$f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$

=
$$\lim_{h \to 0} \frac{(x_0 + h)^3 - x_0^3}{h}$$

=
$$\lim_{h \to 0} \frac{(x_0^3 + 3x_0^2 h + 3x_0 h^2 + h^3) - x_0^3}{h}$$

=
$$\lim_{h \to 0} \frac{3x_0^2 h + 3x_0 h^2 + h^3}{h}$$

=
$$\lim_{h \to 0} (3x_0^2 + 3x_0 h + h^2) = 3x_0$$